US 2022/0019516 Al

DETERMINING A RECOMMENDED
SOFTWARE-STACK FOR A TARGET
SOFTWARE ITEM

TECHNICAL FIELD

[0001] The present disclosure relates generally to software
stacks. More specifically, but not by way of limitation, this
disclosure relates to determining a recommended software-
stack for a target software item.

BACKGROUND

[0002] A software stack is a set of software components
configured to work in tandem to produce a result or achieve
a common goal. The software components may include
operating systems, architectural layers, protocols, run-time
environments, databases, libraries, etc., that are stacked on
top of each other in a hierarchy, such that at least some of the
software components either directly or indirectly depend on
others of the software components. For example, two well-
known software stacks are LAMP (Linux, Apache, MySQL,
and PHP/Perl/Python) and WINS (Windows Server, IIS,
.NET, and SQL Server). Software stacks generally include
all of the software components needed to run a particular
software item (e.g., an application, service, or package), so
that no additional software is needed to support the software
item. The software components are typically provided
together in a bundle for easy and fast installation, even
though the software components are often created and
maintained by different developers independently of one
another.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 is a block diagram of an example of a
system for determining a recommended software-stack for a
target software item according to some aspects of the present
disclosure.

[0004] FIG. 2 is a block diagram of another example of a
system for determining a recommended software-stack for a
target software item according to some aspects of the present
disclosure.

[0005] FIG. 3 a flow chart of an example of a process for
determining a recommended software-stack for a target
software item according to some aspects of the present
disclosure.

DETAILED DESCRIPTION

[0006] A software item such as a software application can
rely on one or more libraries or other dependencies for
proper operation. There can be many versions of the soft-
ware item and many versions of each of these dependencies.
Additionally, at least some of the dependencies may in turn
have their own dependencies that serve as indirect depen-
dencies of the software item. There can be many versions of
those indirect dependencies, and those indirect dependencies
may have their own further dependencies. And so on. As a
result, there is often a large number of possible combinations
of a software item and its dependencies (e.g., direct and
indirect dependencies) that can be used in a software stack
for the software item. And some of these combinations may
perform worse than others. For example, some combinations
may introduce defects, assembly problems, or deployment
issues that can be time consuming and difficult to identify
and resolve. Given the large number of possibilities, it can

Jan. 20, 2022

be challenging to manually identify and test all of the
possible combinations of a software item and its dependen-
cies to determine the best software-stack for a software item.

[0007] Some examples of the present disclosure overcome
one or more of the abovementioned problems via a system
that can generate a group of software-stack candidates for a
target software item and determine a respective score for
each of the software-stack candidates using a scoring func-
tion. The scoring function can take into account character-
istics of a computing environment in which the target
software item is to be executed. The system can then select
one of the software-stack candidates from the group as a
recommended software-stack based on its corresponding
score. In this way, the system can automatically analyze
many combinations of the software item and its dependen-
cies to determine a recommended software-stack for the
software item that is the best (e.g., most optimal) for the
computing environment, relative to the other software-stack
candidates in the group.

[0008] As one particular example, TensorFlow is a popular
Python library for building artificial intelligence or machine
learning applications. An analysis of different versions of
libraries used by TensorFlow 1.11.0 revealed that there are
currently approximately 6.39E+27 possible combinations
for a TensorFlow application stack (e.g., the TensorFlow
package and possible combinations of libraries on which
TensorFlow depends). And this is just for version 1.11.0 of
TensorFlow. Another version of TensorFlow, version 2.0.
OrcO released on Aug. 23, 2019, currently has approximately
6.58E+35 possible combinations of libraries, which is
approximately 1E+8 times more combinations than version
1.11.0. These large numbers just take libraries into account.
In practice, TensorFlow runs in a computing environment
with various software characteristics (e.g., native libraries
and packages, cross-ecosystem dependencies, kernel ver-
sions, and driver versions) and hardware characteristics
(e.g., a CPU type, GPU type, etc.), all of which add more
dimensions to the search space. It would likely be impos-
sible to manually determine and test all of the possible
combinations for all of the TensorFlow versions to verify
application behavior. Even trying to build and test all of the
possible combinations in a more automated fashion using a
computer would still be extremely time consuming and
resource-intensive.

[0009] Some examples of the present disclosure can over-
come one or more of the abovementioned problems via a
system that can first execute a search algorithm to perform
a search on a search space containing many or all possible
combinations of a target software item, like TensorFlow, and
its dependencies. The search algorithm can be a heuristic
search algorithm, such as a Monte-Carlo tree-analysis algo-
rithm or a temporal-difference learning algorithm; a stochas-
tic search algorithm, such as a simulated annealing algo-
rithm; or another type of algorithm. The search algorithm
may learn or be guided over time (e.g., between iterations)
to more rapidly converge towards solutions, without having
to test all of the possible combinations defined in the search
space. This type of searching can be referred to as a
combinatorial optimization problem, in which a space is
searched for a local maximum or minimum that best satisfies
an objective function. By solving this combinatorial opti-
mization problem, the system can rapidly determine a group
of software-stack candidates that are most likely to yield the
best results, where each of the software-stack candidates in



